Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2310926, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38239093

RESUMO

Activation of small molecules is considered to be a central concern in the theoretical investigation of environment- and energy-related catalytic conversions. Sub-nanostructured frustrated Lewis pairs (FLPs) have been an emerging research hotspot in recent years due to their advantages in small molecule activation. Although the progress of catalytic applications of FLPs is increasingly reported, the fundamental theories related to the structural formation, site regulation, and catalytic mechanism of FLPs have not yet been fully developed. Given this, it is attempted to demonstrate the underlying theory of FLPs formation, corresponding regulation methods, and its activation mechanism on small molecules using CeO2 as the representative metal oxide. Specifically, this paper presents three fundamental principles for constructing FLPs on CeO2 surfaces, and feasible engineering methods for the regulation of FLPs sites are presented. Furthermore, cases where typical small molecules (e.g., hydrogen, carbon dioxide, methane oxygen, etc.) are activated over FLPs are analyzed. Meanwhile, corresponding future challenges for the development of FLPs-centered theory are presented. The insights presented in this paper may contribute to the theories of FLPs, which can potentially provide inspiration for the development of broader environment- and energy-related catalysis involving small molecule activation.

2.
ChemSusChem ; : e202301687, 2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38221143

RESUMO

Developing inexpensive and efficient catalysts for biomass hydrogenation or hydrodeoxygenation (HDO) is essential for efficient energy conversion. Transition metal phosphides (TMPs), with the merits of abundant active sites, unique physicochemical properties, tunable component structures, and excellent catalytic activities, are recognized as promising biomass hydrogenation or HDO catalytic materials. Nevertheless, the biomass hydrogenation or HDO catalytic applications of TMPs are still limited by various complexities and inherent performance bottlenecks, and thus their future development and utilization remain to be systematically sorted out and further explored. This review summarizes the current popular strategies for the preparation of TMPs. Subsequently, based on the structural and electronic properties of TMPs, the catalytic activity origins of TMPs in biomass hydrogenation or HDO is elucidated. Additionally, the application of TMPs in efficient biomass hydrogenation or HDO catalysis, as well as highly targeted multiscale strategies to enhance the catalytic performance of TMPs, are comprehensively described. Finally, large-scale amplification synthesis, rational construction of TMP-based catalysts and in-depth study of the catalytic mechanism are also mentioned as challenges and future directions in this research field. Expectedly, this review can provide professional and targeted guidance for the rational design and practical application of TMPs biomass hydrogenation or HDO catalysts.

3.
Small ; : e2308142, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37984879

RESUMO

Hollow nanoreactors (HoNRs) have regarded as an attractive catalytic material for photocatalysis due to their exceptional capabilities in enhancing light harvesting, facilitating charge separation and transfer, and optimizing surface reactions. Developing novel HoNRs offers new options to realize controllable catalytic behavior. However, the catalytic mechanism of photocatalysis occurring in HoNRs has not yet been fully revealed. Against this backdrop, this review elaborates on three aspects: 1) the fundamental theoretical insights of HoNRs-driven photocatalytic kinetics; 2) structure-performance relationship of HoNRs to photocatalysis; 3) catalytic advantages of HoNRs in photocatalytic applications. Specifically, the review focuses on the fundamental theories of HoNRs for photocatalysis and their structural advantages for strengthening light scattering, promoting charge separation and transfer, and facilitating surface reaction kinetics, and the relationship between key structural parameters of HoNRs and their photocatalytic performance is in-depth discussed. Also, future prospects and challenges are proposed. It is anticipated that this review paper will pave the way for forthcoming investigations in the realm of HoNRs for photocatalysis.

4.
RSC Adv ; 13(46): 32175-32184, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37928856

RESUMO

Landfill leachate poses a threat to the environment and human health, and its complex composition made it difficult to treat. Among the methods for treating landfill leachate, the physicochemical combination method is considered to have significant effectiveness, low cost, and application potential. In this study, we propose a new method of coagulation and hydrodynamic cavitation/chlorine dioxide (HC/ClO2) for treating landfill leachate. The optimal conditions for coagulation and HC/ClO2 treatment were investigated experimentally. Under the optimal conditions for coagulation, the COD removal rate was 60.14%. Under the optimal HC/ClO2 treatment conditions, the COD removal rate was 58.82%. In the combined coagulation and HC/ClO2 process, the COD removal rate was 83.58%. Thus, the proposed method can significantly reduce the organic load before subsequent biological treatment processes, thereby reducing the operation cycles and cost of biological treatment.

5.
Ying Yong Sheng Tai Xue Bao ; 34(10): 2619-2628, 2023 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-37897268

RESUMO

Determining the differences of water use characteristics of a tree species with different origins (natural forests and introduced plantations) is significantly important for forest sustainable management. Pinus sylvestris var. mongolica is an important tree species of afforestation in the 'Three North' project in China. In this study, with Pinus sylvestris var. mongolica from two origins, we monitored the sap flow velocity of sapwood (Js) of trees by thermal dissipation sap flow probes, and analyzed the relationship between water transportation and the environmental factors during the growing season. The results showed that under the typical sunny day, daily sap flow velocity (Js-daily) of trees from plantations was significantly higher than that from natural forests. The mean value of Js-daily was 132.98 and 114.86 cm·d-1 for the two origins, respectively. Trees from plantations showed higher water transportation potential than natural forests. Vapor pressure deficit (VPD) mainly showed the driving effect on the water use process of trees from natural forests. In the plantations, there was an obvious threshold effect, and the inflection point of VPD was about 1.91 kPa, with the boundary function of Js-hour increased to the maximum of 17.88 cm·h-1. Atmospheric driven transpiration potential (Js-hour/VPD) of P. sylvestris var. mongolica trees with two origins decreased with the aggravation of soil drought, but sensitivity to drought was higher in the plantations than in the natural forests, suggesting the strong ability of Pinus sylvestris var. mongolica to regulate water use process.


Assuntos
Pinus sylvestris , Pinus , Pinus sylvestris/fisiologia , Água/análise , Florestas , Árvores , Solo , China
6.
Nanomaterials (Basel) ; 13(19)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37836333

RESUMO

With the existing pressure sensors, it is difficult to achieve the unification of wide pressure response range and high sensitivity. Furthermore, the preparation of pressure sensors with excellent performance for sleep health monitoring has become a research difficulty. In this paper, based on material and microstructure synergistic enhancement mechanism, a hybrid pressure sensor (HPS) integrating triboelectric pressure sensor (TPS) and piezoelectric pressure sensor (PPS) is proposed. For the TPS, a simple, low-cost, and structurally controllable microstructure preparation method is proposed in order to investigate the effect of carbon nano-onions (CNOs) and hierarchical composite microstructures on the electrical properties of CNOs@Ecoflex. The PPS is used to broaden the pressure response range and reduce the pressure detection limit of HPS. It has been experimentally demonstrated that the HPS has a high sensitivity of 2.46 V/104 Pa (50-600 kPa) and a wide response range of up to 1200 kPa. Moreover, the HPS has a low detection limit (10 kPa), a high stability (over 100,000 cycles), and a fast response time. The sleep monitoring system constructed based on HPS shows remarkable performance in breathing state recognition and sleeping posture supervisory control, which will exhibit enormous potential in areas such as sleep health monitoring and potential disease prediction.

7.
ChemSusChem ; 16(24): e202301091, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-37656427

RESUMO

Nowadays, the field of biomass conversion is gradually moving towards an encouraging stage. The preparation of nitrogen-containing chemicals using various biomass resources instead of fossil resources do not only reduce carbon emissions, but also diversify the products of biomass conversion, thus increasing the economic competitiveness of biomass refining systems. Levulinic acid (LA) can be used as a promising intermediate in biomass conversion for further synthesis of pyrrolidone via reductive amination. However, there are still many critical issues to be solved. Particularly, the specific effects of catalysts on the performance of LA reductive amination have not been sufficiently revealed, and the potential impacts of key conditional factors have not been clearly elucidated. In view of this, this review attempts to provide theoretical insights through an in-depth interpretation of the above key issues. The contribution of catalysts to the reductive amination of LA as well as the catalyst structural preferences for improving catalytic performance are discussed. In addition, the role of key conditional factors is discussed. The insights presented in this review will contribute to the design of catalyst nanostructures and the rational configuration of green reaction conditions, which may provide inspiration to facilitate the nitrogen-related transformation of more biomass platform molecules.

8.
Small ; 19(50): e2304008, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37632316

RESUMO

Nanoreactors, as a new class of materials with highly enriched and ordered pore channel structures, can achieve special catalytic effects by precisely identifying and controlling the molecular diffusion behavior within the ordered pore channel system. Nanoreactors-driven molecular diffusion within the ordered pore channels can be highly dependent on the local microenvironment in the nanoreactors' pore channel system. Although the diffusion process of molecules within the ordered pore channels of nanoreactors is crucial for the regulation of catalytic behaviors, it has not yet been as clearly elucidated as it deserves to be in this study. In this review, fundamental theory and measurement techniques for molecular diffusion in the pore channel system of nanoreactors are presented, structural regulation strategies of pore channel parameters for controlling molecular diffusion are discussed, and the effects of molecular diffusion in the pore channel system on catalytic reactivity and selectivity are further analyzed. This article attempts to further develop the underlying theory of molecular diffusion within the theoretical framework of nanoreactor-driven catalysis, and the proposed perspectives may contribute to the rational design of advanced catalytic materials and the precise control of complex catalytic kinetics.

9.
Molecules ; 28(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37298823

RESUMO

With the development of the chemical industry, benzene, toluene, ethylbenzene, and xylene (BTEX) have gradually become the major indoor air pollutants. Various gas treatment techniques are widely used to prevent the physical and mental health hazards of BTEX in semi-enclosed spaces. Chlorine dioxide (ClO2) is an alternative to chlorine as a secondary disinfectant with a strong oxidation ability, a wide range of action, and no carcinogenic effects. In addition, ClO2 has a unique permeability which allows it to eliminate volatile contaminants from the source. However, little attention has been paid to the removal of BTEX by ClO2, due to the difficulty of removing BTEX in semi-enclosed areas and the lack of testing methods for the reaction intermediates. Therefore, this study explored the performance of ClO2 advanced oxidation technology on both liquid and gaseous benzene, toluene, o-xylene, and m-xylene. The results showed that ClO2 was efficient in the removal of BTEX. The byproducts were detected by gas chromatography-mass spectrometry (GC-MS) and the reaction mechanism was speculated using the ab initio molecular orbital calculations method. The results demonstrated that ClO2 could remove the BTEX from the water and the air without causing secondary pollution.


Assuntos
Poluição do Ar em Ambientes Fechados , Benzeno , Benzeno/química , Tolueno/química , Xilenos/química , Poluição do Ar em Ambientes Fechados/análise , Derivados de Benzeno/química , Gases/análise , Monitoramento Ambiental/métodos
11.
ChemSusChem ; 16(2): e202201809, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36289573

RESUMO

The biomass-derived platform compound 5-hydroxymethylfurfural (HMF) has been hailed as the "Sleeping Giant" due to its promising applications, and it occupies a critical spot in the biomass upgrading roadmap. HMF is typically produced from cellulose and its monosaccharides via a complex tandem conversion with multiple steps (i. e., cellulose depolymerization, glucose isomerization, fructose dehydration, etc.). Previous investigations have confirmed the irreplaceable contribution of solvents in regulating the tandem conversion of cellulose and its monosaccharides to HMF. However, the potential effects of solvents in contributing to this multi-step tandem process have not yet been clearly elucidated. In this context, this Review aims to provide in-depth insights into the intrinsic interactions between solvent system and substrate conversion (cellulose and its monosaccharides conversion), reaction regulation (reaction activity and selectivity regulation), as well as product acquisition (humins formation inhibition and product purification). It attempts to elucidate specific solvent effects to promote a more efficient tandem conversion of cellulose and its monosaccharides towards HMF. The insights provided in this Review may contribute to a more sustainable HMF production from biomass feedstocks and a further development of greener solvent systems.

12.
Angew Chem Int Ed Engl ; 62(3): e202213612, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36346146

RESUMO

As a novel class of catalytic materials, hollow nanoreactors offer new opportunities for improving catalytic performance owing to their higher controllability on molecular kinetic behavior. Nevertheless, to achieve controllable catalysis with specific purposes, the catalytic mechanism occurring inside hollow nanoreactors remains to be further understood. In this context, this Review presents a focused discussion about the basic concept of hollow nanoreactors, the underlying theory for hollow nanoreactor-driven kinetics, and the intrinsic correlation between key structural parameters of hollow nanoreactors and molecular kinetic behaviors. We aim to provide in-depth insights into understanding kinetics occurred within typical hollow nanoreactors. The perspectives proposed in this paper may contribute to the development of the fundamental theoretical framework of hollow nanoreactor-driven catalysis.


Assuntos
Nanotecnologia , Cinética , Catálise
13.
Medicine (Baltimore) ; 101(46): e31636, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36401471

RESUMO

BACKGROUND: Cough variant asthma (CVA), also called concealed asthma or allergic asthma, is the most common cause of chronic cough in children. The disorder is mainly characterized by a nonproductive dry cough associated with a high recurrence rate that is conventionally treated with antibiotics, anti-inflammatory medications, cough suppressants, or expectorants. For millennia, Chinese herbal medicine (CHM) has been used widely in China to treat pediatric CVA cases, although high-quality evidence of CHM efficacy is lacking. In this study, the effectiveness and safety of Xiehuangjiejing (XHJJ) granule will be evaluated when used alone to treat children with CVA. METHODS AND ANALYSIS: A randomized, double-blind, parallel, placebo-controlled multicenter trial will be conducted over the course of 2 weeks. A total of 180 CVA patients of ages between 4 and 7 years old will be randomly assigned to the experimental group (XHJJ granules, 4.5 g administered 3 times daily) or control group (matched placebo, 4.5 g administered 3 times daily) in a 2:1 ratio based on subject number per group, respectively. The trial will consist of a 7-day medical interventional stage and a 7-day follow-up stage. On day 7 of the follow-up stage, an evaluation of all subjects will be carried out to assess cough symptom score as the primary outcome and several secondary outcomes, including TCM (traditional Chinese medicine) syndrome score, lung function, and dosage of salbutamol aerosol inhaler therapy. Safety assessments will also be evaluated during the trial. DISCUSSION: The aim of this study was to examine the effectiveness and safety of Xiehuangjiejing (XHJJ) granule using a trial protocol designed to yield high-quality, statistically robust results for use in evaluating CHM as a treatment for CVA in children.


Assuntos
Asma , Medicamentos de Ervas Chinesas , Humanos , Criança , Pré-Escolar , Tosse/tratamento farmacológico , Tosse/etiologia , Medicamentos de Ervas Chinesas/efeitos adversos , Medicina Tradicional Chinesa/métodos , Método Duplo-Cego , Asma/complicações , Asma/tratamento farmacológico
15.
ChemSusChem ; 15(17): e202201074, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-35790081

RESUMO

In recent years, electrocatalysis was progressively developed to facilitate the selective oxidation of biomass-derived 5-hydroxymethylfurfural (HMF) towards the value-added chemical 2,5-furandicarboxylic acid (FDCA). Among reported electrocatalysts, alloy materials have demonstrated superior electrocatalytic properties due to their tunable electronic and geometric properties. However, a specific discussion of the potential impacts of alloy structures on the electrocatalytic HMF oxidation performance has not yet been presented in available Reviews. In this regard, this Review introduces the most recent perspectives on the alloy-driven electrocatalysis for HMF oxidation towards FDCA, including oxidation mechanism, alloy nanostructure modulation, and external conditions control. Particularly, modulation strategies for electronic and geometric structures of alloy electrocatalysts have been discussed. Challenges and suggestions are also provided for the rational design of alloy electrocatalysts. The viewpoints presented herein are anticipated to potentially contribute to a further development of alloy-driven electrocatalytic oxidation of HMF towards FDCA and to help boost a more sustainable and efficient biomass refining system.


Assuntos
Ligas , Furaldeído , Biomassa , Ácidos Dicarboxílicos/química , Furaldeído/análogos & derivados , Furaldeído/química , Furanos/química
16.
Small ; 18(32): e2201361, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35760757

RESUMO

Rationally modulating the catalytic microenvironment is important for targeted induction of specific molecular behaviors to fulfill complicated catalytic purposes. Herein, a metal pre-chelating assisted assembly strategy is developed to facilely synthesize the hollow carbon spheres with ultrafine ruthenium clusters embedded in pore channels of the carbon shell (Ru@Shell-HCSs), which can be employed as nanoreactors with preferred electronic and geometric catalytic microenvironments for the efficient tandem hydrogenation of biomass-derived furfural toward 2-methylfuran. The channel-embedding structure is proved to confer the ultrafine ruthenium clusters with an electron-deficient property via a reinforced interfacial charge transfer mechanism, which prompts the hydrogenolysis of intermediate furfuryl alcohol during the tandem reaction, thus resulting in an enhanced 2-methylfuran generation. Meanwhile, lengthening the shell pore channel can offer reactant molecules with a prolonged diffusion path, and correspondingly a longer retention time in the channel, thereafter delivering an accelerated tandem hydrogenation progression. This paper aims to present a classic case that emphasizes the critical role of precisely controlling the catalytic microenvironment of the metal-loaded hollow nanoreactors in coping with the arduous challenges from multifunctional catalyst-driven complex tandem reactions.


Assuntos
Furaldeído , Rutênio , Carbono/química , Furaldeído/química , Hidrogenação , Nanotecnologia , Rutênio/química
17.
Oncogene ; 40(24): 4198-4213, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34079084

RESUMO

Invasion and metastasis are the leading causes of death in patients with breast cancer (BC), and epithelial-mesenchymal transformation (EMT) plays an essential role in this process. Here, we found that Lnc-408, a novel long noncoding RNA (lncRNA), is significantly upregulated in BC cells undergoing EMT and in BC tumor with lymphatic metastases compared with those without lymphatic metastases. Lnc-408 can enhance BC invasion and metastasis by regulating the expression of LIMK1. Mechanistically, Lnc-408 serves as a sponge for miR-654-5p to relieve the suppression of miR-654-5p on its target LIMK1. Knockdown or knockout of Lnc-408 in invasive BC cells clearly decreased LIMK1 levels, and ectopic Lnc-408 in MCF-7 cells increased LIMK1 expression to promote cell invasion. Lnc-408-mediated enhancement of LIMK1 plays a key role in cytoskeletal stability and promotes invadopodium formation in BC cells via p-cofilin/F-actin. In addition, the increased LIMK1 also facilitates the expression of MMP2, ITGB1, and COL1A1 by phosphorylating CREB. In conclusion, our findings reveal that Lnc-408 promotes BC invasion and metastasis via the Lnc-408/miR-654-5p/LIMK1 axis, highlighting a novel promising target for the diagnosis and treatment of BC.


Assuntos
Neoplasias da Mama/genética , Movimento Celular/genética , Quinases Lim/genética , Metástase Neoplásica/genética , RNA Longo não Codificante/genética , Apoptose/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Células MCF-7 , MicroRNAs/genética , Metástase Neoplásica/patologia , Regulação para Cima/genética
18.
Theranostics ; 11(10): 4975-4991, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33754039

RESUMO

Cancer-associated fibroblasts (CAFs), a predominant component of the tumor microenvironment, contribute to aggressive angiogenesis progression. In clinical practice, traditional anti-angiogenic therapy, mainly anti-VEGF, provides extremely limited beneficial effects to breast cancer. Here, we reveal that FOS-like 2 (FOSL2), a transcription factor in breast CAFs, plays a critical role in VEGF-independent angiogenesis in stromal fibroblasts. Methods: FOSL2 and Wnt5a expression was assessed by qRT-PCR, western blotting and immunohistochemistry in primary and immortalized CAFs and clinical samples. FOSL2- or Wnt5a-silenced CAFs and FOSL2-overexpressing NFs were established to explore their proangiogenic effects. Invasion, tubule formation, three-dimensional sprouting assays, and orthotopic xenografts were conducted as angiogenesis experiments. FZD5/NF-κB/ERK signaling activation was evaluated by western blotting after blocking VEGF/VEGFR with an anti-VEGF antibody and axitinib. Dual luciferase reporter assays and chromatin immunoprecipitation were performed to test the role of FOSL2 in regulating Wnt5a expression, and Wnt5a in the serum of the patients was measured to assess its clinical diagnostic value for breast cancer patients. Results: Enhanced FOSL2 in breast CAFs was significantly associated with angiogenesis and clinical progression in patients. The supernatant from CAFs highly expressing FOSL2 strongly promoted tube formation and sprouting of human umbilical vein endothelial cells (HUVECs) in a VEGF-independent manner and angiogenesis as well as tumor growth in vivo. Mechanistically, the enhanced FOSL2 in CAFs was regulated by estrogen/cAMP/PKA signaling. Wnt5a, a direct target of FOSL2, specifically activated FZD5/NF-κB/ERK signaling in HUVECs to promote VEGF-independent angiogenesis. In addition, a high level of Wnt5a was commonly detected in the serum of breast cancer patients and closely correlated with microvessel density in breast tumor tissues, suggesting a promising clinical value of Wnt5a for breast cancer diagnostics. Conclusion: FOSL2/Wnt5a signaling plays an essential role in breast cancer angiogenesis in a VEGF-independent manner, and targeting the FOSL2/Wnt5a signaling axis in CAFs may offer a potential option for antiangiogenesis therapy.


Assuntos
Neoplasias da Mama/genética , Fibroblastos Associados a Câncer/metabolismo , Carcinoma/genética , Antígeno 2 Relacionado a Fos/genética , Neovascularização Patológica/genética , Proteína Wnt-5a/genética , Animais , Neoplasias da Mama/irrigação sanguínea , Neoplasias da Mama/metabolismo , Carcinoma/irrigação sanguínea , Carcinoma/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Camundongos Nus , Transplante de Neoplasias , Ativação Transcricional/genética , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/metabolismo
19.
Oncogene ; 40(9): 1609-1627, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33469161

RESUMO

The hostile hypoxic microenvironment takes primary responsibility for the rapid expansion of breast cancer tumors. However, the underlying mechanism is not fully understood. Here, using RNA sequencing (RNA-seq) analysis, we identified a hypoxia-induced long noncoding RNA (lncRNA) KB-1980E6.3, which is aberrantly upregulated in clinical breast cancer tissues and closely correlated with poor prognosis of breast cancer patients. The enhanced lncRNA KB-1980E6.3 facilitates breast cancer stem cells (BCSCs) self-renewal and tumorigenesis under hypoxic microenvironment both in vitro and in vivo. Mechanistically, lncRNA KB-1980E6.3 recruited insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) to form a lncRNA KB-1980E6.3/IGF2BP1/c-Myc signaling axis that retained the stability of c-Myc mRNA through increasing binding of IGF2BP1 with m6A-modified c-Myc coding region instability determinant (CRD) mRNA. In conclusion, we confirm that lncRNA KB-1980E6.3 maintains the stemness of BCSCs through lncRNA KB-1980E6.3/IGF2BP1/c-Myc axis and suggest that disrupting this axis might provide a new therapeutic target for refractory hypoxic tumors.


Assuntos
Neoplasias da Mama/genética , Carcinogênese/genética , Proteínas Proto-Oncogênicas c-myc/genética , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Autorrenovação Celular/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Células-Tronco Neoplásicas/metabolismo , Estabilidade de RNA/genética , RNA Mensageiro/genética
20.
J Adv Res ; 28: 195-208, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33364056

RESUMO

JUP, a homologue of ß-catenin, is a cell-cell junction protein involved in adhesion junction and desmosome composition. JUP may have a controversial role in different malignancies dependence of its competence with or collaboration with ß-catenin as a transcription factor. In this study, we reveal that the function of JUP is related to its cellular location in GC development process from epithelium-like, low malignant GC to advanced EMT-phenotypic GC. Gradual loss of membrane and/or cytoplasm JUP is closely correlated with GC malignancy and poor prognostics. Knockdown of JUP in epithelium-like GC cells causes EMT and promotes GC cell migration and invasion. Ectopic expression of wild JUP in malignant GC cells leads to an attenuated malignant phenotype such as reduced cell invasive potential. In mechanism, loss of membrane and/or cytoplasm JUP abolishes the restrain of JUP to EGFR at cell membrane and results in increased p-AKT levels and AKT/GSK3ß/ß-catenin signaling activity. In addition, nuclear JUP interacts with nuclear ß-catenin and TCF4 and plays a synergistic role with ß-catenin in promoting TCF4 transcription and its downstream target MMP7 expression to fuel GC cell invasion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...